163 research outputs found

    Savings associated with therapeutic appropriateness for patients with relapsed refractory multiple myeloma and high cytogenetic risk diagnosed by FISH test

    Get PDF
    Background: Approximately 23% of myeloma patients have cytogenetic abnormalities which confer a significantly poorer prognosis, and therefore they are defined as "high-risk myeloma" (HRC+) patients. Objective: To estimate the economic impact of a large-scale use of the fluorescence in situ hybridization (FISH) test for the identification of HRC+ patients. Methods: The comparison between the total costs of two scenarios, the first one where patients are not tested for cytogenetic abnormalities, the second one where FISH test is used to identify HRC+ patients and to treat them with the most appropriate therapies, was conducted. The Italian National Healthcare Service (NHS) perspective was adopted. The cost of each treatment was estimated by multiplying Italian unit ex-factory prices by median progression-free survival (PFS). For each scenario, the cost per month of PFS gained was calculated. Sensitivity analysis was conducted to evaluate the impact on the results. Results: N = 777 patients are expected to be HRC+ in Italy. If they were all identified through FISH test and treated with the most appropriate therapies, this would result into savings of € 552,000 and a PFS gain of 419 months, compared with a scenario with no identification. The cost per patient per month of PFS gained is lower in the scenario where FISH test was available (€ 9,921 vs € 10,229 in the scenario without testing). Sensitivity analyses confirmed the robustness of the base case results. Conclusions: A larger adoption of FISH test to identify HRC+ patients is expected to improve clinical outcomes in relapsed refractory multiple myeloma

    Bioengineered Surfaces for Real-Time Label-Free Detection of Cancer Cells

    Get PDF
    Biosensing technology is an advancing field that benefits from the properties of biological processes combined to functional materials. Recently, biosensors have emerged as essential tools in biomedical applications, offering advantages over conventional clinical techniques for diagnosis and therapy. Optical biosensors provide fast, selective, direct, and cost-effective analyses allowing label-free and real-time tests. They have also shown exceptional potential for integration in lab-on-a-chip (LOC) devices. The major challenge in the biosensor field is to achieve a fully operative LOC platform that can be used in any place at any time. The choice of an appropriate strategy to immobilize the biological element on the sensor surface becomes the key factor to obtain an applicable analytical tool. In this chapter, after a brief description of the main biofunctionalization procedures on silicon devices, two silicon-based chips that present an (i) IgG antibody or (ii) an Id-peptide as molecular probe, directed against the B-cell receptor of lymphoma cancer cells, will be presented. From a comparison in detecting cells, the Id-peptide device was able to detect lymphoma cells also at low cell concentrations (8.5 × 10−3 cells/μm2) and in the presence of a large amount of non-specific cells. This recognition strategy could represent a proof-of-concept for an innovative tool for the targeting of patient-specific neoplastic B cells during the minimal residual disease; in addition, it represents an encouraging starting point for the construction of a lab-on-a-chip system for the specific recognition of neoplastic cells in biological fluids enabling the follow-up of the changes of cancer cells number in patients, highly demanded for therapy monitoring applications

    Rehabilitation of gait after stroke: a review towards a top-down approach

    Get PDF
    This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity

    Chapter 9: Silica-based Nanovectors: From Mother Nature to Biomedical Applications (Book chapter)

    Get PDF
    Diatomite is a natural porous silica material of sedimentary origin, formed by remains of diatom skeletons called “frustules.” The abundance in many areas of the world and the peculiar physico-chemical properties made diatomite an intriguing material for several applications ranging from food production to pharmaceutics. However, diatomite is a material still rarely used in biomedical applications. In this chapter, the properties of diatom frustules reduced to nanoparticles, with an average diameter less than 350 nm, as potential drug vectors are described. Their biocompatibility, cellular uptake, and capability to transport molecules inside cancer cells are discussed. Preliminary studies of in vivo toxicity are also presented.Peer reviewe

    Effects of Aversive Stimuli on Prospective Memory. An Event-Related fMRI Study

    Get PDF
    Prospective memory (PM) describes the ability to execute a previously planned action at the appropriate point in time. Although behavioral studies clearly showed that prospective memory performance is affected by the emotional significance attributed to the intended action, no study so far investigated the brain mechanisms subserving the modulatory effect of emotional salience on PM performance. The general aim of the present study was to explore brain regions involved in prospective memory processes when PM cues are associated with emotional stimuli. In particular, based on the hypothesised critical role of the prefrontal cortex in prospective memory in the presence of emotionally salient stimuli, we expected a stronger involvement of aPFC when the retrieval and execution of the intended action is cued by an aversive stimulus. To this aim BOLD responses of PM trials cued by aversive facial expressions were compared to PM trials cued by neutral facial expressions. Whole brain analysis showed that PM task cued by aversive stimuli is differentially associated with activity in the right lateral prefrontal area (BA 10) and in the left caudate nucleus. Moreover a temporal shift between the response of the caudate nucleus that preceded that of aPFC was observed. These findings suggest that the caudate nucleus might provide an early analysis of the affective properties of the stimuli, whereas the anterior lateral prefrontal cortex (BA10) would be involved in a slower and more deliberative analysis to guide goal-directed behaviour

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    The Acoustic Module for the IceCube Upgrade

    Get PDF
    corecore